摘要
针对单纯的神经网络会陷入局部最小点的缺点,以及单纯的GA方法不具备自适应学习能力,且在处理局部区域上存在一定问题的缺点,通过将遗传算法与神经网络相结合,提出了遗传算法优化神经网络权重的混合算法,并将此模型用于对经营性高速公路收费期满、停止收费后的运营成本进行预测。研究结果表明:相比单纯的BP算法,该算法能同时对解空间内的多个点进行遗传优选,避免陷入局部最小点,具有更快的收敛速度和更高的预测精度;该算法预测平均误差为0.06%,比单纯的BP算法提高了1.5%;利用该算法进行经营性高速公路停止收费后运营成本预测,可为高速公路运营管理者进行科学决策提供参考。
- 单位