面向对象结合卷积神经网络的GF-1影像遥感分类

作者:蒋治浩; 林辉*; 张怀清; 蒋馥根
来源:中南林业科技大学学报, 2021, 41(08): 45-67.
DOI:10.14067/j.cnki.1673-923x.2021.08.006

摘要

【目的】近年来,越来越多高时间分辨率、高空间分辨率卫星相继出现,为我们的生产生活提供了很大的便利,如何利用好这些数据庞大、信息丰富的遥感影像一直以来都是国内外研究的热点问题。其中遥感影像的分类是将大量的遥感影像应用于各个领域的基础,针对传统方法对于高分辨率影像分类精度提高难的问题,提出一种面向对象结合卷积神经网络的遥感分类方法。【方法】首先利用构建moran’s I指数与地理探测器q统计量的二维空间的方法,确定最佳分割尺度,以最大面积法确定均质因子权重,对预处理后的GF-1影像进行分割,利用分割后的对象的特征作为分类模型的输入变量,建立一维卷积神经网络(1D-CNN)的分类模型,构建了基于像元的支持向量机,面向对象的支持向量机分类模型,对研究区进行了分类。【结果】利用面向对象的一维卷积神经网络方法进行分类,分类结果总体精度为93.10%,Kappa系数为0.916 7,同基于像元支持向量机方法相比,总体精度提高了24.35%,Kappa系数提高了0.292 3;同面向对象的支持向量机方法相比,总体精度提高了6.2%,Kappa系数提高了0.074 6。【结论】利用构建的moran’s I指数与地理探测器q统计量的二维空间和最大面积法确定最佳分割参数,建立一维卷积神经网络结合面向对象的方法对遥感影像进行分类,与传统模型相比得到的分类结果精度较高,是一种快速有效的分类方法。

全文