针对基于传统卷积神经网络模型的高光谱图像分类算法细节表现力不强及网络结构过于复杂的问题,设计了一种基于多尺度近端特征拼接网络的高光谱图像分类方法。通过引入多尺度滤波器和空洞卷积,在保持模型轻量化的同时可以获取更丰富的空间-光谱判别特征,并提出利用卷积神经网络近端特征间的相互联系进一步增强细节表现力。在3个基准高光谱图像数据集上的实验结果表明,所提方法优于其他分类模型。