摘要

计算区间二型模糊集的质心(也称降型)是区间二型模糊逻辑系统中的一个重要模块。Karnik-Mendel(KM)迭代算法通常被认为是计算区间二型模糊集质心的标准算法。尽管如此,KM算法涉及复杂的计算过程,不利于实时应用。在各种改进类算法中,非迭代的Nie-Tan(NT)算法可节省计算消耗。此外,连续版本NT(CNT,continuous version of NT)算法被证明是计算质心的准确算法。本文比较了离散版本NT算法中求和运算和连续版本NT算法中求积分运算,通过四个计算机仿真例子证实了当适度增加区间二型模糊集主变量采样个数时,NT算法的计算结果可以精确地逼近CNT算法。

  • 单位
    辽宁工业大学