摘要
风电场短期风速具有随机性、多变性和时变性,故其预测精度和时效性有待提高。本文提出C-C法结合极限学习机ELM的快速预测方法,该方法考虑原始的单变量时间序列风速数据间的最大动态演化信息,采用相空间重构C-C法确定风速时间序列间的相关关系,得到风速变化特征的最佳嵌入维数和延迟时间。进而采用具有算法学习速度快、收敛精度高的ELM方法进行风速的快速预测。通过对重庆某风电场短期风速的预测发现,与神经网络和支持向量机方法预测所得结果相比,不仅提高了短期风速预测精度,而且所用方法的预测时间短,适合风电场对短期风速快速预测的需求。
- 单位