摘要
针对传统D*路径规划算法搜索效率低、成本较高的问题,提出有向D*算法.该算法考虑目标点与障碍物信息,引入关键节点概念,逐级扩展确定可行路径,并且引入导向函数以控制单次搜索的节点搜索范围来提高搜索效率;在原欧几里得评价指标的基础上引入路径平滑度函数对偏移路径进行惩罚,避免机器人无效转弯而增加移动成本;通过路径平滑度函数中的"转弯因子"协调路径长度与平滑度之间的关系,给出路径平滑度函数的分段原理与转弯因子的确定方法,并对算法收敛性进行证明.在不同环境下的仿真实验表明,该算法较传统算法能更好地兼顾局部搜索与全局最优性,尤其适用于障碍物较多的复杂环境.
-
单位兰州理工大学; 机电工程学院