摘要
拓展触觉感知能力是智能机器人未来发展的重要方向之一,决定着机器人的应用场景范围。由触觉传感器采集的数据是机器人完成触觉感知任务基础,但触觉数据具有复杂的时空性。脉冲神经网络具有丰富的时空动力学特征和契合硬件的事件驱动性,能更好地处理时空信息和应用于人工智能芯片给机器人带来更高能效。该文针对脉冲神经网络神经元脉冲活动离散性导致网络训练过程反向传播失效的问题,从智能触觉机器人动态系统角度,引入脉冲活动近似函数使脉冲神经网络反向传播梯度下降法有效;针对触觉脉冲数据量少导致的过拟合问题,融合正则化方法加以缓解;最后,提出具有正则化约束的脉冲神经网络机器人触觉物体识别(Spiking neural network Tactile dropout, SnnTd; Spiking neural network Tactile dropout-l2-cosine annealing, SnnTdlc)算法。相较于经典方法TactileSGNet, Grid-based CNN, MLP和GCN, SnnTd正则化方法触觉物体识别率在EvTouchContainers数据集上比最好方法TactileSGNet提升了5.00%,SnnTdlc正则化方法触觉物体识别率在EvTouch-Objects数据集上比最好方法TactileSGNet提升了3.16%。
- 单位