摘要
任务执行时间估计是云数据中心环境下工作流调度的前提.针对现有工作流任务执行时间预测方法缺乏类别型和数值型数据特征的有效提取问题,提出了基于多维度特征融合的预测方法.首先,通过构建具有注意力机制的堆叠残差循环网络,将类别型数据从高维稀疏的特征空间映射到低维稠密的特征空间,以增强类别型数据的解析能力,有效提取类别型特征;其次,采用极限梯度提升算法对数值型数据进行离散化编码,通过对稠密空间的输入向量进行稀疏化处理,提高了数值型特征的非线性表达能力;在此基础上,设计多维异质特征融合策略,将所提取的类别型、数值型特征与样本的原始输入特征进行融合,建立基于多维融合特征的预测模型,实现了云工作流任务执行时间的精准预测;最后,在真实云数据中心集群数据集上进行了仿真实验.实验结果表明,相对于已有的基准算法,该方法具有较高的预测精度,可用于大数据驱动的云工作流任务执行时间预测.
-
单位北京理工大学; 复杂系统智能控制与决策国家重点实验室