摘要

研究了位形间中含单时滞参数的非保守力学系统的Lie对称性和守恒量.首先,利用含时滞的动力学Hamilton原理,建立了含时滞的非保守系统的分段Lagrange运动方程;其次,利用微分方程容许Lie群理论,得到系统的Lie对称确定方程;然后,根据对称性与守恒量之间的关系,通过构造结构方程,得到含时滞的非保守系统的Lie定理;最后,给出了两个具体的算例说明了方法的应用.结果表明:时滞参数的存在使非保守系统的Lagrange方程呈现分段特性,相应的Lie对称性确定方程的个数应是自由度数目的2倍,这对生成元函数提出了更高的限制,同时,守恒量呈现依赖速度项的分段表达.

  • 单位
    机电工程学院; 无锡太湖学院