摘要
中文情感分析模型的文本表示通常只采用词粒度信息,这会导致模型在特征提取时丧失字粒度的特性,同时常用的分词方法的分词结果过于精简,也一定程度上限制了文本表示的丰富度。对此,提出了一种融合字粒度特征与词粒度特征的中文情感分析模型,采用全模式分词得到更丰富的词序列,经词嵌入后将词向量输入Bi-LSTM中提取全文的语义信息,并将隐层语义表示与对应字向量进行初步融合,增强词级信息的鲁棒性;另一方面将字向量输入多窗口卷积,捕捉更细粒度的字级特征信息。最后将字词粒度特征进一步融合后输入分类器得到情感分类结果,在2个公开数据集上的性能测试结果表明,该模型相比同类模型有更好的分类性能。
-
单位南京信息工程大学; 自动化学院