摘要
锂离子电池健康状态(SOH)直接决定了电池储存能量和输出功率的能力。搭载锂离子电池的交通工具在运行时,需要实时上传电池数据,数据记录频率越高,数据通信成本越高。为了保证电池SOH估算准确,同时降低数据通信成本,基于试验室环境,设计了不同充放电倍率下的宽采样频率充放电试验。为了解决宽采样频率下健康特征波动问题,采用局部加权线性回归(LWLR)算法对健康特征下降趋势定性刻画。采用最大信息系数(MIC)算法衡量健康特征与容量的相关性。最后,基于双向长短期记忆(BI-LSTM)神经网络进一步学习容量与健康特征的非线性退化关系。根据单节电池历史数据离线估算电池SOH,最大相对误差为1.601%。
- 单位