摘要
针对单独从振动特征、油液特征对齿轮箱进行磨损状态监测存在特征维度单一、准确率低的问题,提出基于油液-振动多维特征与粒子群优化算法-长短时记忆神经网络(PSO-LSTM)的齿轮箱磨损状态监测算法。对铁谱图像进行预处理,提取磨粒浓度特征、磨粒个数特征,对振动信号进行小波阈值去噪,并提取时域特征,得到油液振动十四维特征作为LSTM模型的输入;采用粒子群优化算法对LSTM模型进行参数寻优。实验验证:使用油液振动十四维特征的PSO-LSTM模型的识别准确率要优于单独使用振动和油液特征的PSO-LSTM模型,PSO-LSTM模型对于油液振动十四维特征数据的识别准确率全面优于未经优化的LSTM模型。
- 单位