摘要
化学需氧量(Chemical Oxygen Demand, COD)是衡量水质状况的最重要参数之一,反映水体受还原性物质污染的程度。该研究采用改进的完全集合经验模式分解(ImprovedCompleteEnsembleEmpiricalModeDecompositionWith Adaptive Noise, ICEEMDAN)、变分模式分解(Variational Mode Decomposition, VMD)相结合的双层数据分解算法,并利用双向长短期记忆(BidirectionalLongShort-termMemory,BLSTM)神经网络,提出了一种混合模型IVB(Improved Complete Ensemble Empirical Mode Decomposition With Adaptive Noise-Variational Mode Decomposition-Bidirectional Long Short-term Memory),并以鄱阳湖高锰酸盐指数(Permanganate index, CODMn)监测数据为研究对象,进行案例研究。结果表明,IVB模型具有良好的预测性能:1d以后的CODMn预测中,IVB模型的平均绝对百分比误差为2.21%,与单一BLSTM神经网络模型相比降低了10.57个百分点,而与IB(ImprovedCompleteEnsembleEmpiricalModeDecomposition With Adaptive Noise-Bidirectional Long Short-term Memory)模型相比降低了4.62个百分点;7 d以后的CODMn预测中,IVB模型的平均绝对百分比误差为8.18%,与单一BLSTM神经网络模型相比降低了16.34个百分点,而与IB模型相比降低了4.68个百分点。这项研究表明,所开发的IVB模型可以用作水资源管理的有效分析与决策工具。
- 单位