提出将高铁轮对运转时产生的振动信号作为样本,分析在高铁轮对运转中,其振动信号中均值、方差、均方值、峰度、裕度因子、脉冲因子等值的变化。由于时域振动信号分析具有很强的实时性,因此采用振动时域信号作为特征信号,提取出能量参数、峰度参数、波形参数、裕度参数、脉冲参数和峰值参数作为样本输入到神经网络模型中,提出利用概率神经网络模型进行高铁轮对故障诊断。利用径向基网络模型,分析历史故障数据,对故障初期显示出的信号特征进行分类,确定中心节点,预测出故障类型,保障高铁轮对可靠运行。