摘要

为了改善基于算法的煤质发热量预测在大规模数据数下计算耗时的情况,利用可完成大规模数据建模的核心支持向量回归机(Core Vector Regression,CVR)建立了煤质发热量预测模型,并利用偏互信息(Partial Mutual Information,PMI)对模型特征变量进行分析筛选。通过对某电厂6 180组数据的验证比较,发现经过PMI筛选后的CVR煤质发热量预测结果相对误差为0.025,计算时间为0.272 s,优于未筛选的CVR,并与最小二乘支持向量机(Least Square Supported Vector Machine,LSSVM)算法在不同样本规模下对比,结果表明随着数据规模的增加PMI-CVR的计算时间远小于LSSVM,所以在大规模数据趋势下PMI-CVR计算更快、更具优势。