摘要
目的在图像压缩感知过程中,不管是整体采样还是固定分块采样,都不能充分利用图像的稀疏性,存在采样率与图像重构质量的矛盾。提出了一种基于图像纹理变化的自适应分块感知采样算法ABCS(adaptive block compressed sensing),再结合JPEG量化思想,在不降低图像重构质量的前提下降低采样率,更大地提高压缩比。方法首先进行图像预分块,计算分析各块纹理复杂度,当图像块纹理复杂度低于相应阈值,选择最佳采样率对各块观测采样,当图像块纹理复杂度高于相应阈值,需再分块,重复上述步骤,达到最小16×16块时停止分块。当最小块的纹理复杂度高于最大阈值采用JPEG量化编码,其他块选择匹配的采样率,以压缩感知方式压缩。结果 ABCS算法与典型的压缩感知重构算法结合并与其原始算法比较,在相近采样率条件下,图像重构质量提高明显,尤其在低采样率下性能更佳,如20%采样率下重构图像PSNR值达到30 d B左右。结论提出的自适应的分块采样充分利用图像的稀疏分布,提高压缩感知的效率;高复杂纹理块采用JPEG编码处理,避免了重构质量差的缺点,同时减少了重构时间。
- 单位