摘要

针对滚动轴承振动信号非平稳、非线性且易受噪声干扰的特点,以及单一振动信号对某些轴承故障识别率偏低的问题,提出一种基于变分模态分解(variational mode decomposition, VMD)灰度图像编码和卷积神经网络(convolutional neural networks, CNN)的多传感融合轴承故障诊断方法。首先,采用VMD对驱动端和风扇端振动信号分解,提取各阶本征模态分量与原始信号相关系数最大的分量;其次,将筛选出的本征模态函数(intrinsic mode function, IMF)分量依次排列并转换成灰度图像;最后,设计CNN结构,将训练集输入网络进行训练,测试集验证网络的有效性,实现滚动轴承故障识别。CWRU数据集和西安交通大学XJTU-SY数据集测试准确率分别达到99.90%和100%,结果表明:该方法能够准确识别变工况下轴承故障类别及损伤程度;对原始信号加入高斯噪声后的测试准确率分别达到99.75%和99.90%,证明该方法具有良好的泛化能力和抗噪性能。

全文