摘要
群智能启发算法在解决大规模分布式问题方面有许多优势。针对传统狼群算法易陷入局部最优和精度不高等缺陷,笔者在分析狼群特点的基础上,提出一种基于自适应性步长和莱维飞行搜索策略的改进狼群算法。首先,通过自适应步长的合理变化,提高搜索精度;其次,采用莱维飞行的搜索策略,在算法后期扩大搜索范围,提高算法的全局搜索能力。最后,为了验证该算法性能,通过仿真实验和实际案例进行了测试,与其他改进方法进行比较。测试结果表明,所提出的改进狼群算法在收敛速度、精度及稳定性方面都有明显优势。
-
单位土木工程学院; 河北工程大学