摘要
传统的机器学习方法在检测JavaScript恶意代码时,存在提取特征过程复杂、计算量大、代码被恶意混淆导致难以检测的问题,不利于当前JavaScript恶意代码检测准确性和实时性的要求.基于此,提出一种基于双向长短时神经网络(BiLSTM)的JavaScript恶意代码检测方法.首先,将得到的样本数据经过代码反混淆,数据分词,代码向量化后得到适应于神经网络输入的标准化数据.其次,利用BiLSTM算法对向量化数据进行训练,学习JavaScript恶意代码的抽象特征.最后,利用学习到的特征对代码进行分类.将本文方法与深度学习方法和主流机器学习方法进行比较,结果表明该方法具有较高的准确率和较低的误报率.
- 单位