摘要

针对行星齿轮箱振动信号相互耦合和故障诊断不准确等问题,提出一种基于特征融合与深度残差网络(ResNet)的行星齿轮箱故障诊断方法。首先,对采集到的行星轮裂纹、磨损,太阳轮断齿及复合故障等模拟故障振动信号应用多维集成经验模态分解(MEEMD)和VMD进行分解,分别筛选确定有效分量。然后,将筛选出的有效特征进行融合,分别应用传统卷积神经网络(CNN)和深度残差网络对其进行分类识别。结果发现,深度残差网络,分类准确度更高,可达95%以上。最后,应用深度残差对特征融合前后数据的分类准确度进行了比较。融合前准确度最高只达91.16%,低于融合的97.18%。可见,该方法对行星齿轮箱耦合振动信号的处理和故障诊断非常有效。

全文