摘要
为提高小样本下的转子故障识别精度,提出了基于残差网络(ResNet)和长短期记忆网络(LSTM)的并行神经网络(RLPN)转子故障迁移诊断方法。首先,使用卷积层和池化层作为模型的前置特征提取器,提取信号的浅层特征;然后,利用ResNet模块提取转子信号的空间特征,利用LSTM模块提取转子信号的时间特征;最后将提取的时间和空间特征融合,对转子的不同工况开展迁移学习,以实现故障诊断。结果表明:该方法能够提升故障的分类性能,有效识别转子故障,诊断结果优于已有的智能故障迁移诊断方法。
-
单位华北电力大学; 华电电力科学研究院有限公司