摘要

亚硝态氮对于水产养殖动物具有毒性,对于其含量的及时监控非常重要。基于光谱法和电极法设计的亚硝态氮传感器价格昂贵,难以大面积推广,因此急需研发一种能快速预测养殖水体亚硝态氮的模型。实验通过实验室构建的水质在线检测系统测定水体中温度、pH、溶解氧、氧化还原电位4个参数,同时用α-萘胺比色法测定水体中亚硝态氮的浓度,从4种参数中选取与亚硝态氮浓度相关的参数作为预测模型的关联变量。水质参数数据及亚硝态氮浓度数据分别经预处理后作为原始数据用于SAE神经网络的训练,训练方法采用无监督逐层贪婪训练法,用学习到的特征监督训练SAE-BP神经网络,利用反向传播算法(BP)优化模型。训练得到结构为4-5-4-3-1的SAE-BP神经网络模型,建立的神经网络模型对实验数据预测的拟合优度R2为0.95,预测结果的均方根误差RMSEP为0.099 71。研究表明,亚硝态氮预测模型可以较为精准地预测水体中亚硝态氮的浓度。本模型将为开发在线快速监测养殖水体亚硝态氮浓度提供新的思路。