文中提出了一种提高深度学习模型对抗样本攻击鲁棒性的网络入侵检测方法。对比了4种不同对抗样本生成技术在两种不同类型攻击上的表现,从归一化的特征空间来评估网络的安全性。将传统的手工固定阈值进行回归模型学习,通过后处理变换转变为自适应阈值。利用弹性网络方法进行对抗样本生成和网络入侵检测优化,在尽可能小的输入扰动下实现混淆入侵检测系统的分类,增强鲁棒性。