摘要

目前,我国高速公路拥堵程度居高不下,而交通流预测作为实现智能交通系统的重要一环,若能对其实现高精度的预测,那么将能够高效地管理交通,从而缓解拥堵。针对该问题,提出了一种考虑时空关联的多通道交通流预测方法(MCST-Transformer)。首先,将Transformer结构用于不同数据的内在规律提取,然后引入空间关联模块对不同数据间的关联特征进行挖掘,最后,借助通道注意力整合优化全局信息。采用广东省高速公路数据,实现了两小时内92个收费站的高精度流量预测。结果表明:MCST-Transformer优于传统机器学习方法以及部分基于注意力机制的时间序列模型,在120min预测跨度下,相比贝叶斯回归,MAPE降低了5.1%;对比Seq2Seq-Att以及Seq2Seq这些深度学习算法,所提出方法的总体MAPE也能降低0.5%,说明通过多通道的方式能够区分不同数据的特性,进而更好地预测。