摘要
针对经典BP神经网络训练效率低、易陷入局部极值等缺点,利用云模型对传统人工鱼群算法(AFSA)进行改进,并采用改进后的云人工鱼群算法(CM-AFSA)对BP神经网络的权值和阈值进行优化,构建基于CM-AFSA-BP神经网络的预测模型。以某土石坝测压管水位为指标,利用CM-AFSA-BP神经网络预测模型对其渗流压力进行预测,并与同结构的经典BP神经网络预测结果进行对比分析。结果表明,CM-AFSA-BP神经网络模型在训练速度和预测精度上明显更优,在土石坝渗流压力预测和分析方面具有较好的适应性。
- 单位