摘要
针对目前人体活动类别识别准确率偏低的问题,提出一种支持向量机(SVM)与情景分析(人体运动状态转换的实际逻辑或统计模型)相结合的识别方法,对人体日常的六种活动(步行、上楼、下楼、坐下、站立、躺下)进行识别。该方法利用了人体活动样本之间存在逻辑关系的特点,首先使用经改进的粒子群优化(IPSO)算法对SVM模型进行优化,然后利用优化后的SVM对人体活动进行分类,最后通过情景分析的方法对错误的识别结果进行修正。实验结果表明,所提方法在加州大学欧文分校(UCI)的人体活动识别数据集(HARUS)上的分类准确率达到了94. 2%,高于传统的仅使用模式识别进行分类的方法。
-
单位电子信息工程学院; 邯郸学院; 河北工业大学