摘要
电阻层析成像技术因其非侵入式测量特点、结果可视化的直观性和测量方法便捷性,被广泛用于医学造像,两相流工业检测和特殊材料检测。但其图像重建的逆过程由于固有的欠定性、病态特点,使得结果有一定偏差。针对该情况,设计了基于Resnet34改进的深度神经网络来求解电阻抗层析成像逆问题。通过设置场域内以像素点为中心,小范围内随机半径与电阻率分布变化强度,正向计算仿真32电极情况下各电极处边界电压,以此建立训练与测试数据集。经调参、训练后,该方法能较快收敛,并和高斯-牛顿法、全变差法以及Tikhonov正则化算法相比较,得到较好的判定性能。
- 单位