摘要
针对传统芯片检测方法存在检测效率低、要求高、适用性差等问题,提出了基于电磁旁路信号和机器学习方法的伪芯片检测框架.首先,在持有正品芯片的基础上通过引入神经网络和多种特征提取方法提取特征向量,并将正样本的指令信号作为模板库;然后,对待测芯片近场电磁信号进行加窗分帧,并对每帧信号进行特征提取;最后,将特征向量输入改进核函数的一类支持向量机进行扫描式匹配,从而达到芯片检测的目的 .实验结果表明,该方法能够适用于以次充好重标记类型的伪芯片检测.
-
单位中国人民解放军陆军工程大学