随着自动驾驶技术的发展,毫米波雷达成为自动驾驶的一个关键传感器,由于汽车雷达数目增加,雷达与雷达间相互干扰是不可避免的问题,为了减轻雷达间的相互干扰,识别车辆中雷达发射的信号类型是很有必要的。针对不同干扰信号类型,本文提出了一种基于残差神经网络的车载雷达干扰分类的方法,首先建立不同类型的干扰数据模型,生成大量的干扰数据,然后应用残差神经网络对不同类型的干扰进行分类。结果显示,该网络不仅收敛速度快,而且在干扰分类方面取得了很好的效果。