摘要

多光谱遥感影像波段之间存在着一定的相关性,发现并找出各波段之间的相关关系,并利用这种关系还原多光谱遥感影像损失的任意部分波段信息,对于深层次的影像信息提取具有重要作用。论文以Landsat TM遥感数据为例,随机选取多光谱遥感影像中六个波段任意同一位置部分影像作为神经网络的训练数据,剩余波段对应位置的数据作为神经网络的标签数据,通过BP神经网络去训练进行重建损失部分的波段研究。结果表明:1)对于重建任意影像波段的损失部分均取得相当好的效果;2)增加训练的数据量,同时适当地加深BP神经网络的深度层数,网络结构性能会变得更好,能提升重建图像质量;3)通过BP神经网络训练出的模型具有很好的稳定性,其原多光谱遥感影像波段和经BP神经网络训练出的模型所重建的波段之间的相关系数总体约可达0.99,PSNR值总体约为37.44,SSIM值总体约为0.97,MSSIM值总体约为0.97。研究表明,该BP神经网络结构及其模型在重建多光谱遥感影像波段方面具有一定的应用价值。