摘要
针对齿轮箱轴承信号非平稳性及其故障特征难以提取的问题,提出一种自适应白噪声平均总体经验模态分解(CEEMDAN)能量熵和马氏距离相结合的故障诊断方法。首先采用CEEMDAN方法对非平稳的轴承故障信号进行分解,获得若干阶表征信号特性的固有模态函数(IMF)分量;然后计算各IMF分量的自相关函数和相关系数,以滤除信号内的噪声干扰和对故障特征不敏感的IMF分量;最后计算各敏感故障特征分量的能量熵,将其作为特征参数形成状态特征向量,并使用马氏距离判别方法对轴承的工作状态和故障类型进行诊断。通过对实测不同工况以及不同故障程度的齿轮箱轴承信号的分析,证明了所提方法的有效性。
- 单位