摘要
通过自制的可视嗅觉指纹技术系统跟踪了不同储藏时间下的对虾、梭子蟹和小黄鱼的挥发性气体成分变化。通过色敏传感器阵列对不同水产品的挥发性气体进行了整体表征,并通过主成分分析(principal component analysis,PCA)呈现水产品储藏过程的气味变化趋势;然后通过线性判别分析(linear discriminant analysis,LDA)定性识别了对虾、梭子蟹和小黄鱼的新鲜度。结果表明,新鲜对虾的识别率为94. 44%,腐败对虾的识别率为93. 75%,新鲜小黄鱼的识别率为95%,腐败小黄鱼的识别率为100%,新鲜梭子蟹的识别率为100%,腐败梭子蟹的识别率为92. 31%;利用该技术结合误差反向传播人工神经网络(back propagation artificial neural network,BP-ANN)模型来定量预测水产品中的挥发性盐基氮(total volatile basic nitrogen,TVBN)含量,该模型与半微量定氮法测定对虾、梭子蟹和小黄鱼中TVBN含量的相关系数分别为0. 988 4、0. 995 4、0. 983 8,结果表明,该技术可用于水产品新鲜度的快速表征。