摘要

[研究目的]融合协同过滤与链路预测对“企业一专利”关系进行系统而细致的逻辑表达,继而精准有效的识别企业潜在合作关系,有助于企业聚合技术资源并推动产业创新化进程。[研究方法]基于非晶合金专利数据构建合作网络,通过Pearson相关系数计算专利文本的内容相似性,利用SM算法计算IPC号的类别相似度,使用SimRank指标和RA指标计算链路预测的路径相似度,随后借助权重预测算法构建以三者为基础的融合加权指标。将融合指标作为协同过滤推荐算法的输入,进而预测企业潜在合作伙伴。[研究结论]研究表明,融合协同过滤和链路预测的“链路推荐”算法预测平均准确率达到93.21%,较之传统的协同过滤算法提升了2.42%左右。在非晶合金领域企业潜在合作关系预测过程中,由“链路推荐”算法得出的推荐结果能够为企业合作提供决策与参考。

  • 单位
    山西财经大学