摘要
当前软件命名实体识别方法忽略了对命名实体标签的预测,存在精度等级(P@N)、F1值和KS值均偏低问题。提出基于组合神经网络的软件命名实体识别方法。将识别命名实体问题转化成“SBEIO”标签预测问题,在组合神经网络模型的基础上提取字、词特征,并将两者结合得到词向量特征,以此预测出最优标签序列。构建支持向量机分类器,将标签序列进行分类,根据超平面分割出分类结果,利用决策函数确定出最优分类命名实体,实现软件命名实体识别。实验结果表明,所提方法具有较高的精度等级(P@N)、F1值以及KS值。
- 单位