摘要
快速准确获取森林的空间分布对评估森林资源和生态环境状况具有重要的意义。以云南省普洱市为研究区,基于Google Earth Engine(GEE)平台和Sentinel-2影像数据,结合实地调查数据、机载遥感数据及地形辅助数据,提取影像的光谱特征、纹理特征以及地形特征,通过特征筛选,得到适合森林分类的最优特征数据集。结合简单线性非迭代聚类(SimpleNon-Iterative Clustering,SNIC)超像素分割算法,探究不同分类方法、特征变量等因素对分类精度的影响。结果表明:面向对象分类方法的分类精度要优于基于像元分类方法,分类总体精度为88.21%,Kappa系数为0.87,可以较为准确地对普洱市进行森林覆盖制图。面向对象方法可以有效减轻“椒盐现象”,特征优选避免了冗余信息对分类结果的影响,有效提高了分类效率。GEE平台与面向对象方法结合可以提供大区域、高精度的森林覆盖遥感快速制图。
-
单位国际河流与生态安全研究院; 云南大学; 中国林业科学研究院资源信息研究所