摘要

为了解决自组织迁移算法存在的早期收敛问题,提出了基于反向学习的自组织迁移算法(Opposition-basedSelf-organizing Migrating Algorithm,OSOMA)。该算法利用反向学习机制扩展了个体的搜索方向,获得了更优秀的采样个体,使得算法在保持多样性的同时提高了收敛速度。此外,该算法还对步长进行自适应调整,进一步平衡了算法的勘探和开采能力。通过典型函数的测试证实了OSOMA的有效性。