摘要

评价对象抽取是对象级情感分析的关键任务之一,评价对象抽取结果会直接影响对象级情感分类的准确率.在评价对象抽取任务中,借助手工特征加强模型性能的方式既消耗时间又耗费人力.针对数据规模小、特征信息不充分等问题,提出一种基于交互特征表示的评价对象抽取模型(aspect extraction model based on interactive feature representation, AEMIFR).相比其他模型,AEMIFR模型结合字符级嵌入与单词嵌入,捕获单词的语义特征、字符的形态特征以及字符与词语之间的内在联系.而且,AEMIFR模型获取文本的局部特征表示和上下文依赖特征表示,并学习2种特征表示之间的交互关系,增强2种特征之间的相似特征的重要性,减少无用特征对模型的消极影响,以及学习更高质量的特征表示.最后在SemEval 2014,SemEval 2015,SemEval 2016中的数据集L-14,R-14,R-15,R-16上进行实验,取得具有竞争力的效果.