摘要
大斑病是一种对玉米危害严重的病害,迫切的需要一种可以快速了解玉米大斑病病情的方法。以无人机遥感作为新的技术平台,探究玉米冠层受到大斑病胁迫时的光谱响应情况,并利用无人机高光谱成像技术对大斑病病情进行监测和可视化研究。采集玉米多生育期(抽雄期、灌浆期、完熟期)冠层500~900 nm的高光谱影像,根据采集影像的原始光谱和一阶微分光谱特征,提取出12个大斑病敏感波段位置, 12个波段位置分别为:514, 532, 553, 680, 714, 728, 756和818 nm,近红外、红、绿波段及红边位置。根据前人提出的植物病害监测参数结合提取的敏感波段位置,构建13组针对玉米冠层大斑病的监测光谱参数,研究不同波段对大斑病病情指数(DI)值的敏感性,并构建玉米冠层大斑病的监测模型,验证利用无人机遥感监测大斑病DI值的精度及稳定性。结果表明:随病情指数增加,一阶微分光谱图出现典型的"蓝移"现象,病害冠层DI值与红光(680~714 nm)和近红外(770~818 nm)的反射率及一阶微分光谱图的红边位置(680~756 nm)相关性更显著,与绿光波段相关性较低。在13组监测光谱参数中, 8组与建模样点冠层大斑病实测DI值达到极显著相关水平,决定系数(R2)均达到0.8以上,选取各生育期R2达到0.8以上的光谱参数用于玉米冠层大斑病监测模型的构建,将检验样本的实测值与监测模型的预测值进行相关性分析。检验表明,在抽雄期,模型DI-NDVI(SDλi, SDλj)的回归斜率(0.829 3)和决定系数(R2=0.842 7)都最接近1,均方根误差(RMSE=4.59)和相对误差(RE=12.3)更小,说明模型DI-NDVI(SDλi, SDλj)的预测能力和精度更高。各生育期对应模型均取得较好监测效果,说明本研究利用无人机遥感对植物病害监测具有指导意义,对精准农业的发展具有一定的借鉴价值。
-
单位成都理工大学; 国土资源部