摘要
在基于稀疏表示的幻觉脸重建过程中,由于冗余的过完备字典会降低稀疏编码的效率和精度,提出用紧的聚类子字典来表示人脸图像的不同结构对象。由高分辨率(high resolution,HR)/低分辨率(low resolution,LR)的人脸图像样本集进行K-均值聚类,为使紧的聚类子字典能够表达图像块的整体特征,对各聚类子集采用主成分分析(principal component analysis,PCA)方法构造字典。得到同构的HR/LR的聚类字典后,对于输入的LR人脸图像块,经自适应选择合适的子字典后,对稀疏编码添加正则化项,采用集中式稀疏编码,以使稀疏表示系数更逼近要重建的HR人脸图像块。由此稀疏表示系数与HR字典的线性组合得到HR人脸图像块,将此图像块与近似结果进行合成,从而得到最终的人脸图像。经仿真实验,并与其他的方法进行比较,实验结果验证了所提方法的有效性。
- 单位