摘要

传统的模糊方法已无法解决数据本身不确定性的问题,犹豫模糊集方法却行之有效.原有的犹豫模糊层次聚类算法没有考虑犹豫模糊集对权值的影响,缺乏合理的权重计算方法,并且算法的时间复杂度和空间复杂度都为指数级.为了更有效地解决聚类分析问题,本文提出一种凝聚中心犹豫度恒定的模糊层次聚类算法(FHCA),首先设计了一种基于数据集本身信息的权重公式,可以得到更加合理的权重分配.此外还提出了新的簇中心的计算公式,不仅使聚类过程中,簇中心的犹豫度具有不变性,还将原有算法的时间复杂度以及空间复杂度从指数级降至线性级,并且聚类的质量不劣于原有的聚类算法.