摘要
采用近红外光谱技术结合反向传播人工神经网络算法建立了茶叶中蔗糖含量的检测模型,并通过引入遗传算法改进了模型预测质量。预测模型采用120个茶叶掺蔗糖样品的傅里叶变换漫反射光谱数据建立。对另外42个样品的预测结果表明,基于传统的反向传播人工神经网络算法模型的相关系数为0.738 0,预测均方根误差为3.075 4,正确识别率为83.3%;增加遗传算法后相关系数提高到0.941 9,预测均方根误差为1.317 6,正确率为88.1%,训练误差减小一个量级以上。实验结果表明,反向传播人工神经网络模型可用来检测茶叶中的蔗糖含量,同时,引入遗传算法优化了神经网络的初始权值和阈值,使预测误差更小。
-
单位中国科学院上海技术物理研究所; 中国科学院大学; 上海科技大学