摘要
云检测是提高遥感影像利用率和应用范围的有效措施。然而,现有云检测算法大多存在以下两个问题:冰、雪等复杂下垫面与云不易区分;需要大量人工标记好的云样本对模型进行训练。为提高影像云识别精度,提出了一种基于Attention U-Net的陆地卫星影像云检测算法。首先,利用卷积操作在编码模块提取云的浅层特征;然后,利用反卷积、跳跃连接和注意力机制在解码模块进一步挖掘云特征;最后,利用少量公开的陆地卫星影像云样本数据进行训练,实现端到端的陆地卫星影像像素级云检测。实验结果表明,与传统的机器学习算法相比,所提算法的总体检测精度更高,薄云和云阴影的误检率和漏检率更低。
- 单位