摘要

为了便捷准确地计算番茄果实长度、宽度和投影面积表型参数并模拟果实重量,以番茄粉冠F1为试验材料,利用YOLOv3深度学习模型检测和裁切番茄果实图像,利用像素计算来分割番茄果实区域,将计算果实区域的6个特征参数输入线性回归模型、BP神经网络模型、支持向量机(SVM)模型中反演果实重量,以期从图像中获取番茄果实表型参数及重量模拟结果。结果表明,YOLOv3模型对番茄果实检测的平均精确度(AP)为90.06%;用果实长度、宽度、投影面积计算的平均相对误差分别为3.37%、5.65%、5.49%;用线性回归模型、BP神经网络模型、SVM模型模拟得到的果实重量的平均相对误差分别为44.68%、17.38%、6.45%。研究结果证实,从图像处理中获取番茄果实长度、宽度、投影面积表型参数是可行的,SVM模型对番茄果实重量的模拟精度较高。

全文