摘要
氨氮是地下水中的主要无机污染物之一,其主要来自农业、工业和生活污染。过量的氨氮会危害人类健康。氨氮时空分布受气象、水文、水文地质和土地利用类型等因素的影响,因此,基于有限采样点的地下水氨氮分析会产生很大的不确定性。本研究以三江平原松花江流域为例,选取土壤有机质质量分数、土壤全氮质量分数、土壤阳离子交换容量(CEC)、土壤pH值、地下水埋深、包气带黏土层厚度和土地利用类型作为潜在的影响因素,建立拟合氨氮质量浓度的机器学习模型;在此基础上使用解释机器学习模型的SHAP(shapley additive explanations)方法识别显著的影响因素,并据此建立机器学习预测模型,对研究区地下水氨氮质量浓度进行数据插补,分析其时空变化规律。研究结果表明:地下水埋深、土地利用类型、CEC和土壤有机质质量分数是研究区地下水氨氮的主要影响因素;2011—2018年期间,研究区地下水氨氮处于Ⅰ—Ⅲ类水质级别的面积呈现增加趋势,面积占比从31%增加到87%,Ⅳ—Ⅴ类水的面积呈现减少趋势,面积占比从69%减少到13%,水质整体向好。
- 单位