针对英文等符号语言不能直接使用现有的神经网络机器翻译模型(NMT)的问题。在简述LSTM神经网络的基础上,采用分桶(bucketing)的方式将样本进行batch划分,在NMT模型中加入注意力机制提高了系统的性能,并分别利用双向LSTM神经网络和贪婪算法设计了基于上下文特征提取的编码器和输出算法的解码器。最后从语句还原程度和语义识别情况两个角度对英文的一元分词和HMM分词在NMT模型上的应用结果进行了对比,研究了英文的NMT模型适配方案。