摘要

互联网企业飞速发展,如今已慢慢步入大数据的时代,用户在电商平台的选择急剧增加,为了提升用户体验、提高用户留存率和促进用户下单,各大电商平台都推出了各自的个性化推荐系统。个性化推荐算法的基本原理有基于内容的推荐、协同过滤和混合过滤等,由于算法的复杂化和不同电商平台的各自业务特点,不同平台的底层算法也有所不同。本文首先介绍了个性化推荐系统的概念及其发展历程、个性化推荐算法原理及分类,论述了电商平台个性化推荐系统的实际价值与实现。本文还以拼多多、小红书、京东三大电商平台为例,分析其个性化推荐系统的具体实现方式,阐述了个性化推荐系统面临的挑战和未来趋势,最后得出结论。