摘要
氨是氮肥等工业的主要原料,因此氨产量居各种化工产品的首位.目前,90%以上的氨通过传统Haber-Bosch法制得,但该反应需要在高温高压下进行,消耗大量能源,同时排放大量CO2.基于此,科研人员致力于寻求一种绿色、高效的合成氨替代方法.其中,利用太阳能,通过光电化学氮还原合成氨是最有潜力和竞争力的方法之一,该方法也为有效利用太阳能提供了新途径.目前,虽然光电化学氮还原研究取得了一定进展,但是氨产率和氮转换效率低限制了其经济可行性.这主要归因于四个方面:(1)牢固的氮氮三键使得氮气难以活化;(2)复杂的多步和多电子反应使得动力学迟缓;(3)析氢竞争反应降低了太阳能-氨的转换效率;(4)氮气在水溶液中的溶解度低导致吸附在光电阴极表面的氮气较少.为解决上述问题,本文通过溅射法在B掺杂的p型(100)晶向硅片上共沉积Au,Co和Pd,然后在600℃下和空气中快速退火,制得由助催化剂/保护层/光吸收层组成的层级硅基光电阴极,并用于氮还原合成氨.成分和结构表征结果表明,层级硅基光电阴极由p型硅光吸收层、二氧化硅保护薄层和AuCoPd合金纳米颗粒助催化剂组成,该电极可表示为AuCoPd-CoOx/SiO2/Si,简称ACP电阴极.角分辨X射线光电子能谱和同步辐射X射线吸收光谱结果表明,形成了局域电子结构AuCoPd合金纳米颗粒,并可分析出Au离子和Pd离子在纳米颗粒上的比例和分布.变压光电化学实验结果表明,ACP光电阴极表现出较好的氮还原合成氨性能,在3 MPa下氨产率达到22.2±0.4μg·h-1·cm-2,法拉第效率达到22.9%.同时,ACP光电阴极的光电化学氮还原行为遵循勒夏特列(化学平衡移动)原理:随着反应压强增加,氨产率、法拉第效率和起始光电压均随之增大.原位X射线光电子能谱和原位同步辐射X射线吸收光谱结果表明,Au离子和Pd离子为氮还原反应的活性位点,为氮气活化及加氢提供反应场所;同时,揭示了邻近的Pd元素为Au物种上活化的氮气提供了活性质子,促进了氮还原合成氨反应进程.综上,本文为设计高效且稳定的光电阴极并应用于光电化学氮还原反应提供一定的参考.
- 单位