摘要
为了实现具有不同测量尺度、分辨率与精度等特性的跨源点云的精确配准,提出了基于多尺度采样的测量点云数据配准方法。通过尺度滑移算法来滤除高频细节信息,保留轮廓数据,并结合体素网格邻域法来实现点云数据的降采样;对于宏观结构光视觉测量的低分辨率点云数据,通过基于深度学习的渐进式三维点云上采样算法可以精确还原结构光点云的轮廓细节,实现跨源点云在尺度与分辨率上的统一。最后,采用迭代最近点法对处理后尺度近似的数据进行配准,并将配准关系逆向用于原始跨源点云的配准。实验结果表明,多尺度采样方法对于跨源点云的配准精度有所提高,能有效用于发动机叶片等零部件的高性能检测。
- 单位