为了有效解决用户在电影网站海量资源中寻找兴趣度高的电影时效率低这一问题,研究了一种基于标签的推荐算法。根据用户与标签的关系计算用户对标签的兴趣度;构建标签基因矩阵以及兴趣度矩阵,计算出用户对电影的喜好程度;为用户推荐喜好程度高的电影,提高用户对电影网站的好感度。通过在实际数据集上应用基于标签的推荐算法,验证了该算法的可行性以及有效性。