摘要
目前质谱技术被广泛应用于未知化合物成分分析。一种常见方式是将测得的待分析化合物质谱与现存质谱库中已有条目进行相似性计算。然而现有谱库存在覆盖性不足的问题:对于不存在于谱库中的化合物无法实现正确的检索。一种解决此问题的方式是从已知的分子结构及其对应的质谱数据中,利用神经网络得到分子结构特征与谱峰间存在的潜在映射关系,从而实现对质谱的预测。针对目前质谱预测方法中存在的分子结构特征丢失的问题,提出了一种基于分子嵌入的质谱预测方法,使用分子嵌入方法将分子结构特征转换为高维特征向量。结果标明,相较于传统方法中使用分子指纹对分子结构特征进行表示,使用分子嵌入方法进行质谱预测所得到的质谱平均相似性提高了5.4%,这些预测质谱在化合物检索任务中的表现也超过了基于分子指纹的预测方法。本文同时对实验中使用的数据集进行了差异性分析,表明该方法具有较好的泛化性能。
-
单位自动化学院; 安徽大学